© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

BBA 76547

CALCIUM EFFLUX FROM SARCOPLASMIC RETICULUM VESICLES

HATISABURO MASUDA* and LEOPOLDO DE MEIS

Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Av. Pasteur 458- 2º andar, Praia Vermelha, Rio de Janeiro, GB (Brasil)

(Received October 11th, 1973)

SUMMARY

 ${\rm Ca^{2}}^{+}$ efflux was studied in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. In experimental conditions in which the ${\rm Ca^{2}}^{+}$ pump is reversed, the rate of ${\rm Ca^{2}}^{+}$ efflux varies with the ADP, orthophosphate and ${\rm Mg^{2}}^{+}$ concentrations of the assay medium and is inhibited by ${\rm Na^{+}}$.

A highly efficient ATP-dependent system for Ca²⁺ transport has been described in sarcoplasmic reticulum vesicles isolated from skeletal muscle. This system plays a key role in the process of excitation-contraction coupling in muscle cells [1,2]. Though the Ca²⁺ uptake proceeds at a very fast rate, the Ca²⁺ accumulated by the sarcoplasmic reticulum vesicles is released slowly when the pump is arrested by different experimental procedures which do not damage the sarcoplasmic reticulum vesicle membrane [3].

Recently it has been shown that the rate of Ca²⁺ efflux is greatly enhanced when pre-loaded vesicles are incubated in a medium containing ADP and P_i. Coupled with the release of Ca²⁺ there is ATP formation, thus characterizing the reversal of the Ca²⁺ pump [3–7]. Different results have been reported for the role of Mg²⁺, ADP and P_i on the reversal of the Ca²⁺ pump. Panet and Selinger [7] observed that Mg²⁺ inhibits the Ca²⁺ efflux, that the rate of Ca²⁺ outflow is activated by either P_i or ADP alone, and that the effect of ADP and P_i is not additive. On the other hand, Barlogie et al. [3] reported that Mg²⁺ does not inhibit the Ca²⁺ efflux and that the increment of Ca²⁺ efflux was only observed in the presence of Mg²⁺, ADP and P_i.

In this communication, the role of Mg²⁺, ADP and P_i on the activation of Ca²⁺ efflux of pre-loaded sarcoplasmic reticulum vesicles was further studied.

Sarcoplasmic reticulum vesicles were prepared from rabbit skeletal muscle as previously described [8].

The sarcoplasmic reticulum vesicles were loaded with calcium oxalate by incubating at room temperature 3.3 mg of sarcoplasmic reticulum vesicle protein in 1 ml of a medium containing 20 mM Tris-maleate buffer, pH 7.0; 20 mM KCl, 2 mM ITP, 5 mM MgCl₂, 1 mM $^{45}\text{CaCl}_2$, 1 mM ethyleneglycol-bis-(\$\beta\$-aminoethylether)-N,N'-tetraacetic acid (EGTA) and 5 mM potassium oxalate. After 5 min incubation at room temperature, 95–98% of the ^{45}Ca of the assay medium was removed by the sarcoplasmic reticulum vesicles. Efflux experiments were initiated by adding 0.17 ml

Abbreviation: EGTA, ethyleneglycol-bis- $(\beta$ -aminoethylether)-N,N'-tetraacetic acid.

of medium containing the loaded sarcoplasmic reticulum vesicles in 5 ml of a solution containing 10 mM Tris-maleate buffer (pH 7.0), 1 mM EGTA and variable concentrations of Mg²⁺, ADP and P_i. Ca²⁺ incorporation or release was determined by measuring the ⁴⁵Ca in the solution after removing the sarcoplasmic reticulum vesicles by means of Millipore filters [9].

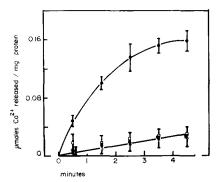


Fig. 1. Activation of Ca^{2+} efflux by ADP, P_1 and Mg^{2+} . Sarcoplasmic reticulum vesicles were previously loaded with calcium oxalate as described in the text, and then incubated in media containing 10 mM Tris-maleate buffer (pH 7.0), 1 mM EGTA and (\blacksquare) 2 mM ADP, 20 mM P_1 and 5 mM $MgCl_2$; (\Box) 2 mM ADP and 20 mM P_1 ; (\blacksquare) 20 mM P_1 and 5 mM $MgCl_2$; (\Box) 2 mM ADP and 5 mM $MgCl_2$; (\Box) no additions. The experimental conditions were as described in the text. The values represent the average \pm S.E. of 6 experiments.

Fig. 1 shows that the rate of Ca^{2+} efflux was only activated in the presence of ADP, P_i and Mg^{2+} . If any of these reagents was omitted, the rate of Ca^{2+} efflux is drastically decreased. Fig. 2 shows a Lineweaver–Burk plot of the initial rate of Ca^{2+} efflux as a function of the P_i concentration, in the presence of 0.5 mM ADP. In four experiments the K_m for P_i found was 4.7 mM \pm S.E. 0.9. Fig. 2 also shows that raising

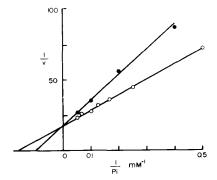


Fig. 2. Competition of ADP and P_1 for the sarcoplasmic reticulum vesicle membrane. The initial rate (1 min) of Ca^{2+} efflux of sarcoplasmic reticulum vesicles loaded with calcium oxalate was measured in media containing 10 mM Tris-maleate buffer (pH 7.0), 1 mM EGTA, 5 mM MgCl₂, variable concentrations of P_1 ranging from 1 to 20 mM, and 0.5 mM ADP (\bigcirc — \bigcirc) or 2.0 mM ADP (\bigcirc — \bigcirc). The experimental conditions were as described in the text. The figure shows a typical experiment. Essentially the same results were observed in four different sarcoplasmic reticulum vesicle preparations tested.

the ADP concentration to 2 mM results in a decrease of the Ca²⁺ efflux rate due to a competition of ADP with P_i for the binding site on the sarcoplasmic reticulum vesicle membrane.

In previous papers it has been shown that Na⁺ and K⁺ might inhibit the Ca²⁺ transport depending on the substrate used [9–12]. In eight different sarcoplasmic reticulum vesicle preparations the Ca²⁺ efflux was measured in media containing 10 mM Tris-maleate buffer pH 7.0, 1 mM EGTA, 2 mM ADP, 4 mM P_i, 2 mM MgCl₂ and either 5 mM KCl, 120 mM KCl or 120 mM NaCl. The rates of Ca²⁺ efflux found were, respectively, 11.2±S.E. 2.6; 9.5±S.E. 1.9 and 8.0±S.E. 1.3 μ moles Ca²⁺ per mg protein per min. The inhibition caused by Na⁺ was statistically significant (P<0.05).

In conclusion, this communication shows that in conditions in which the Ca^{2+} pump of the sarcoplasmic reticulum vesicles is reversed, the rate of Ca^{2+} efflux is Mg^{2+} dependent, is inhibited by 120 mM Na⁺ but not by 120 mM K⁺, and that the maximal rate of Ca^{2+} efflux varies with the ADP: P_i ratio used, excess of ADP being inhibitory.

ACKNOWLEDGEMENTS

This work was supported by the Conselho Nacional de Pesquisas (T.C. No. 16.293), by the Conselho de Ensino e Pesquisas para Graduados da U.F.R.J. and by the Banco Nacional de Desenvolvimento Econômico (FUNTEC 143).

H. M. is Recipient of a fellowship from the Coordenação do Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERENCES

- 1 Hasselbach, W., and Makinose, M. (1961) Biochem. Z. 333, 518-528
- 2 Hasselbach, W. (1972) in Molecular Bioenergetics and Macromolecular Biochemistry (Weber, H. H., ed.), pp. 149-171, Springer Verlag, Berlin-Heidelberg-New York
- 3 Barlogie, B., Hasselbach, W., and Makinose, M. (1971) FEBS Lett. 12, 267-268
- 4 Makinose, M. (1971) FEBS Lett. 12, 269-270
- 5 Makinose, M., and Hasselbach, W. (1971) FEBS Lett. 12, 271-272
- 6 Makinose, M. (1972) FEBS Lett. 25, 113-115
- 7 Panet, R., and Selinger, Z. (1972) Biochim. Biophys. Acta 255, 34-42
- 8 de Meis, L., and Hasselbach, W. (1971) J. Biol. Chem. 246, 4759-4763
- 9 deMeis, L. (1969) J. Biol. Chem. 244, 3733-3739
- 10 de Meis, L. (1971) J. Biol. Chem. 246, 4764–4773
- 11 de Meis, L. (1972) Biochemistry 11, 2460-2465
- 12 de Meis, L., and Fialho de Mello, M. C. (1973) J. Biol. Chem. 248, 3691-3701